摘要

In this study, we developed a non-crosslinking gold nanoprobe loop-mediated isothermal amplification (LAMP) method for nanodiagnosis of bacterial typhoid fever source, Salmonella typhi. Therefore, a unique region in the S. typhi genomic DNA was targeted for LAMP amplification using a specific set of four precisely designed primers. Also, for specific colorimetric visualization of the amplicons, a thiolated oligonucleotide probe, complementary to the single-stranded loop region of the amplicons between F2 and F1C segments, was designed. The probe was bound to the surface of gold nanoparticles via covalent bonds. Increasing the salt concentration in the detection reaction medium led to aggregation of nanoprobes in the blank and the negative vessels in a time-dependent form. That was followed by a change in the surface plasmon resonance (SPR) leading to blue/black color that was observable by the naked eyes after about 5 min. Meanwhile, the original pink/red color was retained in the positive sample due to the large interparticle spaces and the stability against the ionic strength elevation which persisted for about 30 min. The whole process of DNA extraction, amplification, and detection took less than 2 h with a sensitivity of 20 CFU/ml. The developed gold nanoprobe-LAMP could serve as a simple, rapid, and cost-effective method for nanodiagnosis of S. typhi in point-of-need applications.

  • 出版日期2016-11-25