摘要

A new hybrid algorithm is proposed for construction of a high-quality calibration model for near-infrared (NIR) spectra that is robust against both spectral interference (including background and noise) and multiple outliers. The algorithm is a combination of continuous wavelet transform (CWT) and a modified iterative reweighted PLS (mIRPLS) procedure. In the proposed algorithm the spectral interference is filtered by CWT at the first stage then mIRPLS is proposed to detect the multiple outliers in the CWT domain. Compared with the original IRPLS method, mIRPLS does not need to adjust variable parameters to achieve optimum calibration results, which makes it very convenient to perform in practice. The final PLS model is constructed robustly because both the spectral interference and multiple outliers are eliminated. In order to validate the effectiveness and universality of the algorithm, it was applied to two different sets of NIR spectra. The results indicate that the proposed strategy can greatly enhance the robustness and predictive ability of NIR spectral analysis.