摘要

A mechanism for creating amino acid enantiomerism that always selects the same large-scale chirality is identified, and subsequent chemical replication and galactic mixing that would populate the Galaxy with the predominant species is described. This involves (1) the spin of the (14)N in the amino acids, or in precursor molecules from which amino acids might be formed, that couples to the chirality of the molecules; (2) the neutrinos emitted from the supernova, together with the magnetic field from the nascent neutron star or black hole formed from the supernova, which selectively destroy one orientation of the (14)N and thus select the chirality associated with the other (14)N orientation; (3) chemical evolution, by which the molecules replicate and evolve to more complex forms of a single chirality on a relatively short timescale; and (4) galactic mixing on a longer timescale that mixes the selected molecules throughout the Galaxy.