摘要

Motivated by the fact that the major causes of catastrophic failure in micro hard disk drives are mostly induced by the presence of particles, a new particle-induced failure susceptibility metric, called the Cumulative Particle Counts (CPC), is proposed for managing reliability risk in a fast-paced hard disk drive product development process. This work is thought to represent the first successful attempt to predict particle-induced failure through an accelerated testing framework which leverages on existing streams of research for both particle-injection-based and inherent-particle-generation laboratory experiments to produce a practical reliability prediction framework. In particular, a new testing technique that injects particles into hard disk drives so as to increase the susceptibility of failure is introduced. The experimental results are then analyzed through a proposed framework which comprises the modeling of a CPC-to-failure distribution. The framework also requires the estimation of the growth curve for the CPC in a prime hard disk drive under normal operating conditions without particle injection. Both parametric and non-parametric inferences are presented for the estimation of the CPC growth curve. Statistical inferential procedures are developed in relation to a proposed non-linear CPC growth curve with a change-point. Finally, two applications of the framework to design selection during an actual hard disk drive development project and the subsequent assessment of reliability growth are discussed.

  • 出版日期2010