摘要

An ultrafast high-power infrared pulse source employing a dual-chirped optical parametric amplification (DC-OPA) scheme based on a Ti:sapphire pump laser system is theoretically investigated. By chirping both pump and seed pulses in an optimized way, high-energy pump pulses can be utilized for a DC-OPA process without exceeding the damage threshold of BBO crystals, and broadband signal and idler pulses at 1.4 mu m and 1.87 mu m can be generated with a total conversion efficiency approaching 40%. Furthermore, few-cycle idler pulses with a passively stabilized carrier-envelope phase (CEP) can be generated by the difference frequency generation process in a collinear configuration. DC-OPA, a BBO-OPA scheme pumped by a Ti:sapphire laser, is efficient and scalable in output energy of the infrared pulses, which provides us with the design parameters of an ultrafast infrared laser system with an energy up to a few hundred mJ.