Hierarchically structured ZSM-5 obtained by optimized mesotemplate-free method as active catalyst for methanol to DME conversion

作者:Rutkowska M*; Macina D; Piwowarska Z; Gajewska M; Diaz U; Chmielarz L
来源:Catalysis Science & Technology, 2016, 6(13): 4849-4862.
DOI:10.1039/c6cy00040a

摘要

In the presented studies, a new method for the synthesis of hierarchical porous materials with ZSM-5 zeolite properties was applied. The proposed method is based on the acidification of the zeolite seeds slurry using HCl solution, followed by hydrothermal treatment, enabling the aggregation of zeolite nanoseeds with the formation of the interparticle mesoporous structure. The influence of the duration of zeolite parent mixture aging before and after acidification on the resulting properties of the samples was investigated. The physicochemical properties of the obtained micro-mesoporous samples were analyzed using techniques such as N-2-sorption measurements, X-ray diffraction, TG analysis, NH3-TPD and electron microscopy. In the second part of the studies, the influence of the modified zeolite sample parameters (such as porosity, acidity and crystallinity) on their catalytic activity for dimethyl ether (DME) synthesis from methanol was studied. DME is considered as a future clean alternative to diesel fuel and the development of methods for its synthesis is currently of high scientific interest. It was shown that modification of the porous structure and acidity of the zeolitic samples strongly influences their catalytic activity, selectivity and stability for the DME synthesis process. The micro-mesoporous samples, despite their significantly lower acidity, exhibited high catalytic activity (similar to conventional ZSM-5 zeolite) and enhanced selectivity towards DME, as well as higher stability in a long term catalytic test (higher resistance to the formation of coke deposits) in comparison to standard MFI-type zeolites.

  • 出版日期2016