摘要

CpG oligodeoxynucleotides (CpG-ODNs), mimicking bacterial DNA, stimulate osteoclastogenesis via Toll-like receptor 9 (TLR9) in receptor activator of NF-kappaB ligand (RANKL)-primed osteoclast precursors. This activity is mediated via tumor necrosis factor (TNF)-alpha induction by CpG-ODN. To further reveal the role of the cytokine in TLR9-mediated osteoclastogenesis, we compared the ability of CpG-ODN to induce osteoclastogenesis in two murine strains, BALB/c and C57BL/6, expressing different TNF-alpha alleles. The induction of osteoclastogenesis and TNF-alpha release by CpG-ODN was by far more noticeable in BALB/c-derived than in C57BL/6-derived osteoclast precursors. Unexpectedly, as revealed by Northern analysis, CpG-ODN induction of TNF-alpha mRNA increase was more efficient in C57BL/6-derived cells. The cytokine transcript abundance was increased due to both increased message stability and rate of transcription. The difference between the two cell types was the result of a higher transcription rate in CpG-ODN-induced C57BL/6-derived cells caused by a single nucleotide polymorphism in kappaB2a site within the TNF-alpha promoter sequence. CpG-ODN enhanced the rate of the cytokine translation in BALB/c-derived cells. Thus, CpG-ODN modulated both transcription and translation of TNF-alpha. The induction of transcription was more evident in C57BL/6-derived cells, while the induction of translation took place only in BALB/c-derived osteoclast precursors. Altogether the cytokine was induced to a larger extent in BALB/c-derived osteoclast precursors, consistent with the increased CpG-ODN osteoclastogenic effect in these cells.

  • 出版日期2004-12-24

全文