摘要

In this paper, we present a phase-field method applied to the fluid-based shape optimization. The fluid flow is governed by the incompressible Navier-Stokes equations. A phase field variable is used to represent material distributions and the optimized shape of the fluid is obtained by minimizing the certain objective functional regularized. The shape sensitivity analysis is presented in terms of phase field variable, which is the main contribution of this paper. It saves considerable amount of computational expense when the meshes are locally refined near the interfaces compared to the case of fixed meshes. Numerical results on some benchmark problems are reported, and it is shown that the phase-field approach for fluid shape optimization is efficient and robust.