Magneto-optical Goos-Hanchen effect in a prism-waveguide coupling structure

作者:Tang, Tingting; Qin, Jun; Xie, Jianliang; Deng, Longjiang; Bi, Lei*
来源:Optics Express, 2014, 22(22): 27042-27055.
DOI:10.1364/OE.22.027042

摘要

We report a theoretical study of the enhanced Goos-Hanchen (GH) effect in a prism-waveguide coupling system with a magneto-optic thin film of Ce doped Y3Fe5O12 (CeYIG). By magnetizing the CeYIG thin film along different directions, a variation of the GH shift can be observed, which is named as the MOGH (magneto-optical Goos-Hanchen) effect. The applied magnetic field direction is found to cause MOGH effect for light with different polarizations. As example systems, enhanced GH shift and MOGH effect is observed in both prism/Air/CeYIG/SiO2 and prism/Au/CeYIG/SiO2 structures, by applying opposite magnetic field across the CeYIG layer in a transverse magneto-optical Kerr effect (TMOKE) configuration. The GH and MOGH effect as a function of layer thicknesses, material refractive indices and magneto-optical properties are systematically simulated and discussed. It is observed that the coupling layer and MO layer thickness plays an important role of controlling the MOGH effect in the prism/Au/CeYIG/SiO2 plasmonic waveguide structure. The MOGH effect shows high sensitivity to applied magnetic field and index variations, making it promising for applications such as optical switches, modulators, and chemical or biomedical index sensors.