摘要

This article presents a high fidelity acceleration time waveform replication (TWR) on an electro-hydraulic shaking table (EHST) using the hybrid control combined with an offline feed-forward compensator and an online adaptive inverse control (AIC). This study applies the acceleration and velocity feedback to improve the steady performance of the EHST, and employs the system inverse transfer ITF) of the acceleration closed-loop system to extend the frequency bandwidth and a modeling error compensator to improve the dynamic characteristics. Moreover, the investigation utilizes a Zero Phase Error Tracking Controller to improve the accuracy of the designed ITF. The proposed hybrid controller also utilizes an online AIC for a high fidelity TWR after that the dynamic characteristics has been improved by the feedback and feed-forward controllers. Thus, the proposed hybrid control strategy combines the merits of the offline feed-forward compensation and online AIC. Performance analysis and comparison of the experimental results demonstrate that better replication accuracy with the proposed hybrid control can be achieved in experiments on an actual EHST.