摘要

In this paper, the event-triggered distributed H-infinity state estimation problem is investigated for a class of state-saturated systems with randomly occurring mixed delays over sensor networks. The mixed delays, which comprise both discrete and distributed delays, are allowed to occur in a random manner governed by two mutually independent Bernoulli distributed random variables. In order to alleviate the communi-cation burden, an event-triggered mechanism is utilized for each sensor node to decide whether or not its current information should be broadcasted to its neighbors. The aim of this paper is to design event-triggered state estimators such that the error dynamics of state estimation is exponentially mean-square stable with a prescribed H-infinity performance index. By resorting to intensive stochastic analysis, sufficient conditions are first derived to guarantee the existence of the desired estimators, and the parameters of the desired distributed estimators are then obtained in light of the feasibility of a certain set of matrix inequalities. A numerical example is employed to illustrate the usefulness of the proposed distributed estimation algorithm.