摘要

Aqueous organic solid formation from formaldehyde via the formose reaction and subsequent reactions is a possible candidate for the origin of complex primitive chondritic insoluble organic matter (IOM) and refractory carbon in comets. The rate of formation of organic solids from formaldehyde was studied as a function of temperature and time, with and without ammonia, in order to derive kinetic expressions for polymer yield. The evolution in molecular structure as a function of time and temperature was studied using infrared spectroscopy. Using these kinetic expressions, the yield of organic solids is estimated for extended time and temperature ranges. For example, the half-life for organic solid formation is similar to 5 days at 373 K, similar to 200 days at 323 K, and similar to 70 years at 273 K with ammonia, and similar to 25 days at 373 K, similar to 13 years at 323 K, and similar to 2 x 10(4) years at 273 K without ammonia. These results indicate that organic solids could form during the aqueous alteration in meteorite parent bodies. If liquid water existed early in the interiors of Kuiper belt objects (KBOs), formaldehyde could convert into organic solids at temperatures close to 273 K, and possibly even below 273 K in the ammonia-water system.

  • 出版日期2015-3-1