摘要

Fragmentation of habitat can decrease resource availability and restrict movement among geographic areas. Persistence in fragmented landscapes depends on the maintenance of connectivity among populations, without which genetic diversity may decrease and lead to population declines. Bees are particularly vulnerable to the negative effects of low genetic diversity so it is important to understand patterns of dispersal for native bees living in fragmented areas. I used population genetic techniques to characterize patterns of genetic diversity and dispersal for the orchid bee Euglossa imperialis within and among forest fragments in southern Costa Rica, in which the furthest two fragments were 226 km from one another. In addition, I compared results of population genetic analyses conducted with all bees sampled, and results from analyses conducted with a reduced dataset containing only one individual per full sibling family from each site. For both datasets genetic diversity was low within forest fragments, with expected heterozygosity averaging 0.28 for the full dataset and 0.29 for the dataset containing only one full sibling per site. I found no evidence that deforested areas restricted dispersal; pairwise estimates of genetic differentiation among forest fragments averaged 0.01 for the full dataset, and 0 for the dataset containing only one full sibling per site. Genetic distance among sites within forest fragments was significantly correlated to geographic distance for the full dataset, but there was no significant correlation for the dataset that contained only one individual from each full sibling family. This suggests that family structure can drive results of analyses of genetic structure, although reductions in sample sizes following removal of full siblings may have reduced power to detect genetic structure. Despite no evidence for restricted dispersal, the low genetic diversity found suggests that E. imperialis may be an important candidate for future conservation monitoring.

  • 出版日期2017-6