摘要

The fluorescence spectra of 22 samples of 8 kinds of edible vegetable oils (soybean oil, maize oil, olive oil, rice oil, peanut oil, walnut oil, sunflower oil and sesame oil) were measured with FS920 fluorescence spectrometer and the fluorescence matrixs (EEMs) were analyzed with parallel factor (PARAFAC) analysis model. To synthesize the capabilities of material characterization and component identification, fluorescence spectra combined with PARAFAC fulfill the classification of vegetable oils. The map feature (peak position, peak value and peak number) was obtained by analyzing three dimensional spectra and contour maps in the range of emission wavelength from 260 to 750 nm, and excitation wavelengths from 250 to 550 nm. The fluorescent substances (unsaturated fatty acids, vitamin E and its derivatives, chlorophyll and carotenoid) corresponding to spectrum peaks were determined. The factor-number was selected and the components (vitamin E and its derivatives, linoleic acid and linolenic acid, fatty acid oxidation products, vegetable oil oxidation products) corresponding to each factor were ascertained. The four-factor excitation and emission profiles and projection score plots of PARAFAC model were plotted. Different vegetable oils can be characterized and distinguished with the map features of fluorescence spectra and sample projection plots of PARAFAC model. The results demonstrate the capability of the combination of fluorescence spectra technology and four-factor PARAFAC model for differentiating and characterizing vegetable oils.