摘要

Magnetic reconnection has been established as the dominant mechanism by which magnetic fields in different regions change topology to create open magnetic field lines that allow energy and momentum to flow into the magnetosphere. One of the persistent problems of magnetic reconnection is the question of whether the process is continuous or intermittent and what input condition(s) might favor one type of reconnection over the other. Observations from imagers that record FUV emissions caused by precipitating cusp ions demonstrate the global nature of magnetic reconnection. Those images show continuous ionospheric emissions even during changing interplanetary magnetic field conditions. On the other hand, in situ observations from polar-orbiting satellites show distinctive cusp structures in flux distributions of precipitating ions, which are interpreted as the telltale signature of intermittent reconnection. This study uses a modification of the low-velocity cutoff method, which was previously successfully used to determine the location of the reconnection site, to calculate for the cusp ion distributions the time since reconnection occurred. The time since reconnection is used to determine the reconnection time for the cusp magnetic field lines where these distributions have been observed. The profile of the reconnection time, either continuous or stepped, is a direct measurement of the nature of magnetic reconnection at the reconnection site. This paper will discuss a continuous and pulsed reconnection event from the Polar spacecraft to illustrate the methodology.

  • 出版日期2015-3