摘要

Detection and capture of circulating tumor cells (CTCs) with microfluidic chips hold significance in cancer prognosis, diagnosis, and anti-cancer treatment. The counting of CTCs provides potential tools to evaluate cancer stages as well as treatment progress. However, facing the challenge of rareness in blood, the precise enumeration of CTCs is challenging. In the present research, we designed an inertial-deformability hybrid microfluidic chip using a long spiral channel with trapezoid-circular pillars and a capture zone. To clinically validate the device, the microfluidic chip has been tested for the whole blood and lysed blood with a small number of CTCs (colorectal and nonsmall-cell lung cancer) spiked in. The capture efficiency reaches over 90% for three types of cancer cell lines at the flow rate of 1.5 mL/h. Following numerical modeling was conducted to explain the working principle and working condition (Reynolds number below 10 and Dean number around 1). This design extended the effective capture length, improved the capture efficiency, and made the CTC enumeration much easier. We believe that this hybrid chip is promising clinically in the CTCs enumeration, evaluation of cancer therapy, and pharmacological responses.