摘要

There is sudden and dramatic visual function deterioration in 1-10 % of eyes filled with silicone oil at the time of removal of silicon oil. Transmission of high-energy blue light is increased in eyes filled with silicone oil. We sought to identify if increased foveal light exposure is a potential factor in the pathophysiology of the visual loss at the time of removal of silicone oil. A graphic ray tracing computer program and laboratory models were used to determine the effect of the intraocular silicone oil bubble size on the foveal illuminance at the time of removal of silicone oil under direct microscope light. The graphic ray tracing computer program revealed a range of optical vignetting effects created by different sizes of silicone oil bubble within the vitreous cavity giving rise to an uneven macular illumination. The laboratory model was used to quantify the variation of illuminance at the foveal region with different sizes of silicone oil bubble with in the vitreous cavity at the time of removal of silicon oil under direct microscope light. To substantiate the hypothesis of the light toxicity during removal of silicone oil, The outcome of oil removal procedures performed under direct microscope illumination in compared to those performed under blocked illumination. The computer program showed that the optical vignetting effect at the macula was dependent on the size of the intraocular silicone oil bubble. The laboratory eye model showed that the foveal illuminance followed a bell-shaped curve with 70 % greater illuminance demonstrated at with 50-60 % silicone oil fill. The clinical data identified five eyes with unexplained vision loss out of 114 eyes that had the procedure performed under direct microscope illumination compared to none out of 78 eyes that had the procedure under blocked illumination. Foveal light exposure, and therefore the potential for phototoxicity, is transiently increased at the time of removal of silicone oil. This is due to uneven macular illumination resulting from the optical vignetting effect of different silicone oil bubble sizes. The increase in foveal light exposure may be significant when the procedure is performed under bright operating microscope light on already stressed photoreceptors of an eye filled with silicon oil. We advocate the use of precautions, such as central shadow filter on the operating microscope light source to reduce foveal light exposure and the risk of phototoxicity at the time of removal of silicone oil. The graphic ray tracing computer program used in this study shows promise in eye modeling for future studies.

  • 出版日期2013-1