摘要

This paper describes the synthesis of Au nanoparticle sensitized ZnO nanopencil arrays on F-doped SnO2 substrates by an aqueous chemical growth and subsequent photoreduction method. The Au-ZnO nanopencil arrays yield a photocurrent of similar to 1.5 mA cm(-2) at 1V versus Ag/AgCl. The enhanced photocurrent is attributed to the surface plasmon resonance effect of Au nanoparticles and the prolonged lifetime of the photo-generated electron-hole pairs. The improved stability of ZnO is due to the plasmon resonance energy transfer process enabled by the Au nanoparticles, which enhances the electric field intensity in a small, well-defined location of the ZnO semiconductor.