Accurate Calculated Optical Properties of Substituted Quaterphenylene Nanofibers

作者:Finnerty Justin J; Koch Rainer*
来源:Journal of Physical Chemistry A, 2010, 114(1): 474-480.
DOI:10.1021/jp906233d

摘要

The accurate prediction of both excitation and emission energies of substituted p-quaterphenylenes using a variety of established and newly developed density functional methods is evaluated and compared against experimental data, both from single molecules and from nanofibers. For calculation of the UV-vis excitation the MPW1K functional is the best performing method (with the employed TZVP basis set). After a linear scaling factor is applied, mPW2-PLYP, CIS and the very fast INDO/S also reproduce the experimental data correctly. For the fluorescence relaxation energies MPW1K, mPW2-PLYP, and INDO/S give good results, even without scaling. However, mPW2-PLYP involves second-order perturbation to introduce nonlocal electron correlation and therefore requires significantly more resources, so the recommended level of theory for a single methodology to investigate the optical properties of substituted phenylenes and related systems is MPW1K/6-311+G(2d,p), followed by INDO/S as a low-cost alternative. As an extension of a previous work oil predicting first hyperpolarisabilities, we can now demonstrate that the chosen approach (HF/6-31G(d)//B3LYP/6-31G(d)) produces data that correlate well with the susceptibilities derived from measurements on nanofibers.

  • 出版日期2010-1-14