摘要

This paper mainly concerns the mathematical justification of a viscous compressible multi-fluid model linked to the Baer-Nunziato model used by engineers, see for instance Ishii (Thermo-fluid dynamic theory of two-phase flow, Eyrolles, Paris, 1975), under a "stratification" assumption. More precisely, we show that some approximate finite-energy weak solutions of the isentropic compressible Navier-Stokes equations converge, on a short time interval, to the strong solution of this viscous compressible multi-fluid model, provided the initial density sequence is uniformly bounded with corresponding Young measures which are linear convex combinations of m Dirac measures. To the authors' knowledge, this provides, in the multidimensional in space case, a first positive answer to an open question, see Hillairet (J Math Fluid Mech 9:343-376, 2007), with a stratification assumption. The proof is based on the weak solutions constructed by Desjardins (Commun Partial Differ Equ 22(5-6):977-1008, 1997) and on the existence and uniqueness of a local strong solution for the multi-fluid model established by Hillairet assuming initial density to be far from vacuum. In a first step, adapting the ideas from Hoff and Santos (Arch Ration Mech Anal 188:509-543, 2008), we prove that the sequence of weak solutions built by Desjardins has extra regularity linked to the divergence of the velocity without any relation assumption between lambda and mu. Coupled with the uniform bound of the density property, this allows us to use appropriate defect measures and their nice properties introduced and proved by Hillairet (Aspects interactifs de la m'ecanique des fluides, PhD Thesis, ENS Lyon, 2005) in order to prove that the Young measure associated to the weak limit is the convex combination of m Dirac measures. Finally, under a non-degeneracy assumption of this combination ("stratification" assumption), this provides a multi-fluid system. Using a weak-strong uniqueness argument, we prove that this convex combination is the one corresponding to the strong solution of the multi-fluid model built by Hillairet, if initial data are equal. We will briefly discuss this assumption. To complete the paper, we also present a blow-up criterion for this multi-fluid system following (Huang et al. in Serrin type criterion for the three-dimensional viscous compressible flows, arXiv, 2010).