Numerical study of reflectance imaging using a parallel Monte Carlo method

作者:Chen Cheng; Lu Jun Q; Li Kai; Zhao Suisheng; Brock R Scott; Hu Xin Hua*
来源:Medical Physics, 2007, 34(7): 2939-2948.
DOI:10.1118/1.2745241

摘要

Reflectance imaging of biological tissues with visible and near-infrared light has the significant potential to provide a noninvasive and safe imaging modality for diagnosis of dysplastic and malignant lesions in the superficial tissue layers. The difficulty in the extraction of optical and structural parameters lies in the lack of efficient methods for accurate modeling of light scattering in biological tissues of turbid nature. We present a parallel Monte Carlo method for accurate and efficient modeling of reflectance images from turbid tissue phantoms. A parallel Monte Carlo code has been developed with the message passing interface and evaluated on a computing cluster with 16 processing elements. The code was validated against the solutions of the radiative transfer equation on the bidirectional reflection and transmission functions. With this code we investigated numerically the dependence of reflectance image on the imaging system and phantom parameters. The contrasts of reflectance images were found to be nearly independent of the numerical aperture (NA) of the imaging camera despite the fact that reflectance depends on the NA. This enables efficient simulations of the reflectance images using an NA at 1.00. Using heterogeneous tissue phantoms with an embedded region simulating a lesion, we investigated the correlation between the reflectance image profile or contrast and the phantom parameters. It has been shown that the image contrast approaches 0 when the single-scattering albedos of the two regions in the heterogeneous phantoms become matched. Furthermore, a zone of detection has been demonstrated for determination of the thickness of the embedded region and optical parameters from the reflectance image profile and contrast. Therefore, the utility of the reflectance imaging method with visible and near-infrared light has been firmly established. We conclude from these results that the optical parameters of the embedded region can be determined inversely from reflectance images acquired with full-field illumination at multiple incident angles or multiple wavelengths.

  • 出版日期2007-7
  • 单位Cisco