摘要

Interferons have been marketed to treat hematological malignancies, but their efficacy in the treatment of solid tumors has been significantly hindered by low antitumor efficacy and numerous side effects. We used a "cDNA in-frame fragment" library screening method to identify short cDNA peptides that potentiate the anti-tumor activity of interferons. In this study, we synthesized a hybrid molecule by fusing a short positively charged peptide derived from placental growth factor-2 to the C-terminus of human IFN gamma. Using the human brain glioblastoma U87 cell line as a model system, we found that the hybrid interferon exhibited significantly higher activity than did the wild-type IFN gamma in inhibiting tumor cell growth. As compared with the unmodified IFN gamma, the hybrid interferon was better at inhibiting cell invasion in a matri-gel assay and at decreasing tumor colony formation. The enhanced antitumor activity of the synthetic interferon was correlated with the activation of interferon pathway genes and the blockade of tumor cell division at the S-G2/M phase. This study demonstrates the potential of a synthetic IFN gamma for use as a novel antitumor agent.