摘要

A series of 1-azolyl-4-phenyl-2-butanones was designed and synthesized for the inhibition of heme oxygenases (heme oxygenase-1 and heme oxygenase-2). The replacement of imidazole by other azoles led to the discovery of novel 1H-1,2,4-triazole- and 1H-tetrazole-based inhibitors equipotent to a lead imidazole-based inhibitor. The inhibitors featuring 2H-tetrazole or 1H-1,2,3-triazole as the pharmacophore were less potent. Monosubstitution at position 2 or 4(5), or identical disubstitution at positions 4 and 5 of imidazole by a variety of electron-withdrawing or electron-donating, small or bulky groups, as well as the replacement of the traditional imidazole pharmacophore by an array of 3- or 5-substituted triazoles, identically 3,5-disubstituted triazoles, 5-substituted-1H- and 5-substituted-2H-tetrazoles proved to be detrimental to the inhibition of HO, with a few exceptions. The azole-dioxolanes and the azole-alcohols derived from the active azole-ketones were synthesized also, but these inhibitors were less active than the corresponding imidazole-based analogs. The first reported X-ray crystal structure of human heme oxygenase-1 in complex with a 1,2,4-triazole-based inhibitor, namely 4-phenyl-1-(1H-1,2,4-triazol-1-yl)-2-butanone, was also determined. The inhibitor binds to the human heme oxygenase-1 distal pocket through the coordination of heme iron by the N 4 in the triazole moiety, whereas the phenyl group is stabilized by hydrophobic interactions from residues within the binding pocket.

  • 出版日期2010-1