摘要

In order to understand the development of a fracture network generated during the first large-scale hydraulic stimulation at Paralana, South Australia, we analysed more than 7000 induced microearthquakes. In July 2011, about 3 million litres of water were injected in the Paralana 2 well to create a geothermal reservoir. A 3-D velocity model was built from seismic reflection data and used for absolute location of the events, which cluster at the base of the injection well. Hypocentre relocations were determined by inverting travel-time differences, improved by waveform cross-correlation. The geometry of the seismic cloud and the associated seismic moment vary during the injection experiment. Relocated microearthquakes outline NNE-SSW and ENE-WSW preexisting structures. The main part of the seismic moment is released during stimulation and is dominated by three M-w 2.4 events and one M-w 2.5 event. The largest event was associated with right-lateral reverse faulting on a plane striking N82 degrees E and dipping 39 degrees N.

  • 出版日期2014-10
  • 单位NORSAR