摘要

An efficient approach for achieving a dual, conformal and non-metallic metamaterial absorber for microwave applications is proposed in this paper. The unit cell structures are simple circular ring resonators, made up of non-metallic and conducting expanded graphite, fabricated on a linear low density polyethylene substrate. The expanded graphite is synthesized, characterized and processed to be used as a conducting layer. The materials properties of linear low density polyethylene is investigated and found to be a promising candidate for flexible microwave applications. The developed absorber showed more than 90% absorption at 7.72 GHz and 9.92 GHz. Electric and magnetic fields are also simulated at the resonating frequency to understand the absorption mechanism. The proposed expanded graphite based metamaterial absorber possesses the advantages of being ultra-thin, flexible and non-corrosive. Published by AIP Publishing.

  • 出版日期2017-8-7