摘要

The Frank-Kamenetskii (FK) approximation is a common method to represent the Arrhenius-type viscosity of planetary mantles because it reduces the viscosity contrast in the lithosphere to save computational resources and prevent numerical errors. In some cases, this approximation does not lead to satisfying results; for example, it can lead to a mobile-lid regime, whereas use of the Arrhenius law shows a thin stagnant lid. We therefore derive a new, more accurate approximation called 'damped FK approximation' for a temperature- and pressure-dependent viscosity. This damped FK approximation is a mixture between the standard first-order FK approximation and an approximation of second-order accuracy controlled by a damping parameter. Furthermore, the FK parameters are determined self-consistently at every time step. This study shows that the damped FK approximation represents the mantle flow of an Arrhenius-type viscosity for a much larger parameter space than for the standard first-order approximation. It can also be used to simulate terrestrial planets, such as super-Earths, with high pressure dependence of the viscosity, if the surface temperature does not exceed a specific threshold value and if a high enough damping parameter is used. We also test the FK approximation for plate tectonics simulations. The second-order FK approximation best represents the Arrhenius flow in the investigated parameter range. In particular, the dependence of the critical yield stress, at which the transition from the plate tectonics regime to the stagnant-lid regime can be observed, on the Rayleigh number can differ from the Arrhenius case (and the second-order FK approximation) when using a first-order FK approximation or rheology parameters in the Arrhenius law that differ from laboratory values to yield small viscosity contrasts. This finding may have strong implications for the prediction of plate tectonics on terrestrial planets.

  • 出版日期2013-10