摘要

We propose a sixth-order staggered finite volume scheme based on polynomial reconstructions to achieve high accurate numerical solutions for the incompressible Navier-Stokes and Euler equations. The scheme is equipped with a fixed-point algorithm with solution relaxation to speed-up the convergence and reduce the computation time. Numerical tests are provided to assess the effectiveness of the method to achieve up to sixth-order convergence rates. Simulations for the benchmark lid-driven cavity problem are also provided to highlight the benefit of the proposed high-order scheme.

  • 出版日期2017-6