Nonlinear response of the vacuum Rabi resonance

作者:Bishop Lev S; Chow J M; Koch Jens; Houck A A; Devoret M H; Thuneberg E; Girvin S M; Schoelkopf R J*
来源:Nature Physics, 2009, 5(2): 105-109.
DOI:10.1038/NPHYS1154

摘要

On the level of single atoms and photons, the coupling between atoms and the electromagnetic field is typically very weak. By using a cavity to confine the field, the strength of this interaction can be increased by many orders of magnitude, to a point where it dominates over any dissipative process. This strong-coupling regime of cavity quantum electrodynamics(1,2) has been reached for real atoms in optical cavities(3), and for artificial atoms in circuit quantum electrodynamics(4) and quantum dot systems(5,6). A signature of strong coupling is the splitting of the cavity transmission peak into a pair of resolvable peaks when a single resonant atom is placed inside the cavity, an effect known as vacuum Rabi splitting. The circuit quantum electrodynamics architecture is ideally suited for going beyond this linear-response effect. Here, we show that increasing the drive power results in two unique nonlinear features in the transmitted heterodyne signal: the supersplitting of each vacuum Rabi peak into a doublet and the appearance of extra peaks with the characteristic root n spacing of the Jaynes-Cummings ladder. These findings constitute direct evidence for the coupling between the quantized microwave field and the anharmonic spectrum of a superconducting qubit acting as an artificial atom.

  • 出版日期2009-2