Adaptor protein 1 complexes regulate intracellular trafficking of the kidney anion exchanger 1 in epithelial cells

作者:Almomani Ensaf Y; King Jennifer C; Netsawang Janjuree; Yenchitsomanus Pa Thai; Malasit Prida; Limjinda**** Thawornchai; Alexander R Todd; Cordat Emmanuelle*
来源:American Journal of Physiology - Cell Physiology, 2012, 303(5): C554-C566.
DOI:10.1152/ajpcell.00124.2012

摘要

Almomani EY, King JC, Netsawang J, Yenchitsomanus PT, Malasit P, Limjindaporn T, Alexander RT, Cordat E. Adaptor protein 1 complexes regulate intracellular trafficking of the kidney anion exchanger 1 in epithelial cells. Am J Physiol Cell Physiol 303: C554-C566, 2012. First published June 27, 2012; doi:10.1152/ajpcell.00124.2012.-Distal renal tubular acidosis (dRTA) can be caused by mutations in the gene encoding the anion exchanger 1 (AE1) and is characterized by defective urinary acidification, metabolic acidosis, and renal stones. AE1 is expressed at the basolateral membrane of type A intercalated cells in the renal cortical collecting duct (kAE1). Two dRTA mutations result in the carboxyl-terminal truncation of kAE1; in one case, the protein trafficked in a nonpolarized way in epithelial cells. A recent yeast two-hybrid assay showed that the carboxyl-terminal cytosolic domain of AE1 interacts with adaptor protein complex 1 (AP-1A) subunit mu 1A (mu-1A; Sawasdee N, Junking M, Ngaojanlar P, Sukomon N, Ungsupravate D, Limjindaporn T, Akkarapatumwong V, Noisakran S, Yenchitsomanus PT. Biochem Biophys Res Commun 401: 85-91, 2010). Here, we show the interaction between kAE1 and mu-1A and B in vitro by reciprocal coimmunoprecipitation in epithelial cells and in vivo by coimmunoprecipitation from mouse kidney extract. When endogenous mu-1A (and to a lesser extent mu-1B) was reduced, kAE1 protein was unable to traffic to the plasma membrane and was rapidly degraded via a lysosomal pathway. Expression of either small interfering RNA-resistant mu-1A or mu-1B stabilized kAE1 in these cells. We also show that newly synthesized kAE1 does not traffic through recycling endosomes to the plasma membrane, suggesting that AP-1B, located in recycling endosomes, is not primarily involved in trafficking of newly synthesized kAE1 when AP-1A is present in the cells. Our data demonstrate that AP-1A regulates processing of the basolateral, polytopic membrane protein kAE1 to the cell surface and that both AP-1A and B adaptor complexes are required for normal kAE1 trafficking.

  • 出版日期2012-9