Nitrogen-dependent posttranscriptional regulation of the ammonium transporter AtAMT1;1

作者:Yuan Lixing; Loque Dominique; Ye Fanghua; Frommer Wolf B; von Wiren Nicolaus*
来源:Plant Physiology, 2007, 143(2): 732-744.
DOI:10.1104/pp.106.093237

摘要

Ammonium transporter (AMT) proteins of the AMT family mediate the transport of ammonium across plasma membranes. To investigate whether AMTs are regulated at the posttranscriptional level, a gene construct consisting of the cauliflower mosaic virus 35S promoter driving the Arabidopsis (Arabidopsis thaliana) AMT1;1 gene was introduced into tobacco (Nicotiana tabacum). Ectopic expression of AtAMT1;1 in transgenic tobacco lines led to high transcript levels and protein levels at the plasma membrane and translated into an approximately 30% increase in root uptake capacity for N-15-labeled ammonium in hydroponically grown transgenic plants. When ammonium was supplied as the major nitrogen (N) form but at limiting amounts to soil-grown plants, transgenic lines overexpressing AtAMT1;1 did not show enhanced growth or N acquisition relative to wild-type plants. Surprisingly, steady-state transcript levels of AtAMT1;1 accumulated to higher levels in N-deficient roots and shoots of transgenic tobacco plants in spite of expression being controlled by the constitutive 35S promoter. Moreover, steady-state transcript levels were decreased after addition of ammonium or nitrate in N-deficient roots, suggesting a role for N availability in regulating AtAMT1;1 transcript abundance. Nitrogen deficiency-dependent accumulation of AtAMT1;1 mRNA was also observed in 35S: AtAMT1;1-transformed Arabidopsis shoots but not in roots. Evidence for a regulatory role of the 3'-untranslated region of AtAMT1;1 alone in N-dependent transcript accumulation was not found. However, transcript levels of AtAMT1; 3 did not accumulate in a N-dependent manner, even though the same T-DNA insertion line atamt1;1-1 was used for 35S: AtAMT1; 3 expression. These results show that the accumulation of AtAMT1;1 transcripts is regulated in a N- and organ-dependent manner and suggest mRNA turnover as an additional mechanism for the regulation of AtAMT1;1 in response to the N nutritional status of plants.

  • 出版日期2007-2