Analysis of Flow-Induced Vibration Due to Stratified Wavy Two-Phase Flow

作者:Miwa Shuichiro*; Hibiki Takashi; Mori Michitsugu
来源:Journal of Fluids Engineering-Transactions of the ASME, 2016, 138(9): 091302.
DOI:10.1115/1.4033371

摘要

Fluctuating force induced by horizontal gas-liquid two-phase flow on 90 deg pipe bend at atmospheric pressure condition is considered. Analysis was conducted to develop a model which is capable of predicting the peak force fluctuation frequency and magnitudes, particularly at the stratified wavy two-phase flow regime. The proposed model was developed from the local instantaneous two-fluid model, and adopting guided acoustic theory and dynamic properties of one-dimensional (1D) waves to consider the collisional force due to the interaction between dynamic waves and structure. Comparing the developed model with experimental database, it was found that the main contribution of the force fluctuation due to stratified wavy flow is from the momentum and pressure fluctuations, and collisional effects. The collisional effect is due to the fluid-solid interaction of dynamic wave, which is named as the wave collision force. Newly developed model is capable of predicting the force fluctuations and dominant frequency range with satisfactory accuracy for the flow induced vibration (FIV) caused by stratified wavy two-phase flow in 52.5mm inner diameter (ID) pipe bend.

  • 出版日期2016-9