摘要

Automating software testing activities can increase the quality and drastically decrease the cost of software development. Toward this direction, various automated test data generation tools have been developed. The majority of existing tools aim at structural testing, while a quite limited number aim at a higher level of testing thoroughness such as mutation. In this paper, an attempt toward automating the generation of mutation-based test cases by utilizing existing automated tools is proposed. This is achieved by reducing the killing mutants' problem into a covering branches one. To this extent, this paper is motivated by the use of state of the art techniques and tools suitable for covering program branches when performing mutation. Tools and techniques such as symbolic execution, concolic execution, and evolutionary testing can be easily adopted toward automating the test input generation activity for the weak mutation testing criterion by simply utilizing a special form of the mutant schemata technique. The propositions made in this paper integrate three automated tools in order to illustrate and examine the method's feasibility and effectiveness. The obtained results, based on a set of Java program units, indicate the applicability and effectiveness of the suggested technique. The results advocate that the proposed approach is able to guide existing automating tools in producing test cases according to the weak mutation testing criterion. Additionally, experimental results with the proposed mutation testing regime show that weak mutation is able to speedup the mutant execution time by at least 4.79 times when compared with strong mutation.

  • 出版日期2011-12