摘要

A novel poly(3,4-ethylenedioxythiophene)-ionic liquid (i.e., 1-hydroxyethyl-3-methyl imidazolium-bis[(trifluoromethyl)sulfonyl]imide) composite film was electrodeposited on a Pt wire for headspace solid-phase microextraction. The film showed nodular structure and had large specific surface. In addition, it displayed high thermal stability (up to 300 degrees C) and durable property (could be used for more than 200 times). Coupled with gas chromatography-flame ionization detection, the resulting fiber was applied to the headspace solid-phase microextraction and determination of several alcohols (i.e., linalool, nonanol, terpineol, geraniol, decanol and dodecanol). It presented higher extraction capability in comparison with the poly(3,4-ethylenedioxythiophene) and commercial polydimethylsiloxane/divinylbenzene fiber. Under the optimized conditions, the linear ranges exceeded three magnitudes with correlation coefficients above 0.9952 and the low limits of detection were 34.2-81.3 ng L-1. For different alcohols the repeatabilities (defined as RSD) were <5.8% and <7.8% for single fiber (n = 5) and fiber-to-fiber (n = 4), respectively. The proposed method was applied to the determination of these alcohols in real samples with acceptable recoveries from 81.1% to 106.6%.