Bismuth pyrochlore thin films for dielectric energy storage

作者:Michael Elizabeth K*; Trolier McKinstry Susan
来源:Journal of Applied Physics, 2015, 118(5): 054101.
DOI:10.1063/1.4927738

摘要

Thin films of cubic pyrochlore bismuth zinc niobate, bismuth zinc tantalate, and bismuth zinc niobate tantalate were fabricated using chemical solution deposition. This family of materials exhibited moderate relative permittivities between 55 +/- 2 and 145 +/- 5 for bismuth zinc tantalate and bismuth zinc niobate, respectively, and low loss tangents on the order of 0.0008 +/- 0.0001. Increases in the concentration of the tantalum end member increased the dielectric breakdown strength. For example, at 10 kHz, the room temperature breakdown strength of bismuth zinc niobate was 5.1 MV/cm, while that of bismuth zinc tantalate was 6.1 MV/cm. This combination of a high breakdown strength and a moderate permittivity led to a high discharged energy storage density for all film compositions. For example, at a measurement frequency of 10 kHz, bismuth zinc niobate exhibited a maximum recoverable energy storage density of 60.8 +/- 2.0J/cm(3), while bismuth zinc tantalatc exhibited a recoverable energy storage density of 60.7 +/- 2.0J/cm(3). Intermediate compositions of bismuth zinc niobatc tantalate offered higher energy storage densities; at 10 mol. % tantalum, the maximum recoverable energy storage density was similar to 66.9 +/- 2.4 J/cm(3).

  • 出版日期2015-8-7