摘要

This paper investigates the problem of robust H-infinity state estimation for a class of continuous-time nonlinear systems via Takagi-Sugeno (T-S) fuzzy affine dynamic models. Attention is focused on the analysis and design of an admissible full-order filter such that the resulting filtering error system is asymptotically stable with a guaranteed H-infinity disturbance attenuation level. It is assumed that the plant premise variables, which are often the state variables or their functions, are not measurable so that the filter implementation with state-space partition may not be synchronous with the state trajectories of the plant. Based on piecewise quadratic Lyapunov functions combined with S-procedure and some matrix inequality linearization techniques, some new results are presented for the filtering design of the underlying continuous-time T-S fuzzy affine systems. Illustrative examples are given to validate the effectiveness and application of the proposed design approaches.