摘要

Cerebral aneurysms form preferentially at arterial bifurcations. The vascular optimality principle (VOP) decrees that minimal energy loss across bifurcations requires optimal caliber control between radii of parent (r(0)) and daughter branches (r(1) and r(2)): r(0)(n)=r(1)(n)+r(2)(n), with n approximating three. VOP entails constant wall shear stress (WSS), an endothelial phenotype regulator. We sought to determine if caliber control is maintained in aneurysmal intracranial bifurcations. Three-dimensional rotational angiographic volumes of 159 middle cerebral artery (MCA) bifurcations (62 aneurysmal) were processed using 3D gradient edge-detection filtering, enabling threshold-insensitive radius measurement. Radius ratio (RR)=r(0)(3)/(r(1)(3)+r(2)(3)) and estimated junction exponent (n) were compared between aneurysmal and non-aneurysmal bifurcations using Student t-test and Wilcoxon rank-sum analysis. The results show that non-aneurysmal bifurcations display optimal caliber control with mean RR of 1.05 and median n of 2.84. In contrast, aneurysmal bifurcations had significantly lower RR (0.76, p < .0001) and higher n (4.28, p < .0001). Unexpectedly, 37% of aneurysmal bifurcations revealed a daughter branch larger than its parent vessel, an absolute violation of optimality, not witnessed in non-aneurysmal bifurcations. The aneurysms originated more often off the smaller daughter (52%) vs. larger daughter branch (16%). Aneurysm size was not statistically correlated to RR or n. Aneurysmal males showed higher deviation from VOP. Non-aneurysmal MCA bifurcations contralateral to aneurysmal ones showed optimal caliber control. Aneurysmal bifurcations, in contrast to non-aneurysmal counterparts, disobey the VOP and may exhibit dysregulation in WSS-mediated caliber control. The mechanism of this focal divergence from optimality may underlie aneurysm pathogenesis and requires further study.

  • 出版日期2014-10-17