摘要

A numerical model was developed to capture the charge-mass transport in electrochemical nanomanufacturing processes based on mixed-conducting solid electrolyte material systems. This model was verified by the matching of numerical predictions and experimental measurements of process parameters. The model was also used to predict parameters affecting ionic current flow, and to study the temporal and spatial transport properties of solid electrolyte silver sulfide during an electrode dissolution process. Conditions in which phase separation could occur in silver sulfide were found. Enhanced transport properties due to confinement in lateral dimensions were also observed through the developed model. Published by Elsevier Ltd. on behalf of The Society of Manufacturing Engineers.

  • 出版日期2015-4
  • 单位MIT