摘要

The mechanism of cycloaddition reaction between singlet state H2Ge=Ge: and acetaldehyde has been investigated with the MP2/6-311++G** method. From the potential energy profile, it could be predicted that the reaction has two competitive dominant reaction pathways. The reaction rule presented is that the two reactants firstly form a four-membered Ge-heterocyclic ring germylene through the [2+2] cycloaddition reaction. As the 4p unoccupied orbital of Ge: atom in the four-membered Ge-heterocyclic ring germylene and the pi orbital of acetaldehyde form a pi-->p donor-acceptor bond, the four-membered Ge-heterocyclic ring germylene further combines with acetaldehyde to give an intermediate. Because the Ge atom in intermediate exhibits sp(3) hybridization after transition state, the intermediate isomerizes to a spiro-Ge-heterocyclic ring compound via a transition state. Simultaneously, the ring strain of the four-membered Ge-heterocyclic ring germylene makes it isomerize to a twisted four-membered ring product.