"Quantum" imaging of cooperative target based on photon-counting regime

作者:Li Ming Fei; Yang Ran; Huo Juan; Zhao Lian Jie; Yang Wen Liang; Wang Jun; Zhang An Ning*
来源:Acta Physica Sinica, 2015, 64(22): 224208.
DOI:10.7498/aps.64.224208

摘要

"Quantum" imaging is such an technique that the total light intensity transmitted through or reflected by an object is collected by a "bucket" detector, which generally is a photodiode with a collection lens in front and with no spatial resolution, and an image of the object can be retrieved through the assistance of another spatially correlated reference beam which does not interact with the object. In this paper, "quantum" imaging scheme is investigated, instead of using the conventional linear detector, and a single photon detector working in a photon-counting mode is used as a "bucket" detector, which is the most sensitive detector in the present. It is experimentally demonstrated that "quantum" imaging illuminating by pseudo-thermal light can be retrieved through using the single-photon detector working in the photon-counting mode, and the averaged power received by the "bucket" detector is only 2 femto-Watt. It is also experimentally and theoretically demonstrated that the image of the cooperative target can be recovered through the wake scattering medium, which cannot be realized by the classical imaging method. Furthermore, it is found that the wake scattering medium has the potential application in reducing the size of the collection lens of the bucket detector, in other words, enlarging the field of view. Besides, "quantum" imaging recovered by correlation of intensity fluctuations and compressive sensing algorithm are compared, and the most effective ways to retrieve the image are discussed. The scheme of our experiment which is different from the traditional ways, offers a novel method to make the "quantum" imaging technique step further toward its applications in wake light imaging or remote sensing.

  • 出版日期2015-11-20
  • 单位中国航天科工集团公司

全文