Diffraction in time: An exactly solvable model

作者:Goussev Arseni*
来源:Physical Review A, 2013, 87(5): 053621.
DOI:10.1103/PhysRevA.87.053621

摘要

In recent years, matter-wave interferometry has attracted growing attention due to its unique suitability for high-precision measurements and the study of fundamental aspects of quantum theory. Diffraction and interference of matter waves can be observed not only at a spatial aperture (such as a screen edge, slit, or grating), but also at a time-domain aperture (such as an absorbing barrier, or "shutter," that is being periodically switched on and off). The wave phenomenon of the latter type is commonly referred to as " diffraction in time." Here, we introduce a versatile, exactly solvable model of diffraction in time. It describes time evolution of an arbitrary initial quantum state in the presence of a time-dependent absorbing barrier, governed by an arbitrary aperture function. Our results enable a quantitative description of diffraction and interference patterns in a large variety of setups, and may be used to devise new diffraction and interference experiments with atoms and molecules.

  • 出版日期2013-5-29

全文