A computationally efficient method for hand-eye calibration

作者:Zhang Zhiqiang*; Zhang Lin; Yang Guang Zhong
来源:International Journal of Computer Assisted Radiology and Surgery, 2017, 12(10): 1775-1787.
DOI:10.1007/s11548-017-1646-x

摘要

Surgical robots with cooperative control and semiautonomous features have shown increasing clinical potential, particularly for repetitive tasks under imaging and vision guidance. Effective performance of an autonomous task requires accurate hand-eye calibration so that the transformation between the robot coordinate frame and the camera coordinates is well defined. In practice, due to changes in surgical instruments, online hand-eye calibration must be performed regularly. In order to ensure seamless execution of the surgical procedure without affecting the normal surgical workflow, it is important to derive fast and efficient hand-eye calibration methods. We present a computationally efficient iterative method for hand-eye calibration. In this method, dual quaternion is introduced to represent the rigid transformation, and a two-step iterative method is proposed to recover the real and dual parts of the dual quaternion simultaneously, and thus the estimation of rotation and translation of the transformation. The proposed method was applied to determine the rigid transformation between the stereo laparoscope and the robot manipulator. Promising experimental and simulation results have shown significant convergence speed improvement to 3 iterations from larger than 30 with regard to standard optimization method, which illustrates the effectiveness and efficiency of the proposed method.

  • 出版日期2017-10