摘要

This paper presents the framework for developing a robotic system to improve accuracy and reliability of clinical assessment. Clinical assessment of spasticity tends to have poor reliability because of the nature of the in-person assessment. To improve accuracy and reliability of spasticity assessment, a haptic device, named the HESS (Haptic Elbow Spasticity Simulator) has been designed and constructed to recreate the clinical "feel" of elbow spasticity based on quantitative measurements. A mathematical model representing the spastic elbow joint was proposed based on clinical assessment using the Modified Ashworth Scale (MAS) and quantitative data (position, velocity, and torque) collected on subjects with elbow spasticity. Four haptic models (HMs) were created to represent the haptic feel of MAS 1, 1+, 2, and 3. The four HMs were assessed by experienced clinicians; three clinicians performed both in-person and haptic assessments, and had 100% agreement in MAS scores; and eight clinicians who were experienced with MAS assessed the four HMs without receiving any training prior to the test. Inter-rater reliability among the eight clinicians had substantial agreement (kappa = 0.626). The eight clinicians also rated the level of realism (7.63 +/- 0.92 out of 10) as compared to their experience with real patients.

  • 出版日期2012-5