An in situ accelerator-based diagnostic for plasma-material interactions science on magnetic fusion devices

作者:Hartwig Zachary S*; Barnard Harold S; Lanza Richard C; Sorbom Brandon N; Stahle Peter W; Whyte Dennis G
来源:Review of Scientific Instruments, 2013, 84(12): 123503.
DOI:10.1063/1.4832420

摘要

This paper presents a novel particle accelerator-based diagnostic that nondestructively measures the evolution of material surface compositions inside magnetic fusion devices. The diagnostic's purpose is to contribute to an integrated understanding of plasma-material interactions in magnetic fusion, which is severely hindered by a dearth of in situ material surface diagnosis. The diagnostic aims to remotely generate isotopic concentration maps on a plasma shot-to-shot timescale that cover a large fraction of the plasma-facing surface inside of a magnetic fusion device without the need for vacuum breaks or physical access to the material surfaces. Our instrument uses a compact (similar to 1 m), high-current (similar to 1 milliamp) radio-frequency quadrupole accelerator to inject 0.9 MeV deuterons into the Alcator C-Mod tokamak at MIT. We control the tokamak magnetic fields - in between plasma shots - to steer the deuterons to material surfaces where the deuterons cause high-Q nuclear reactions with low-Z isotopes similar to 5 mu m into the material. The induced neutrons and gamma rays are measured with scintillation detectors; energy spectra analysis provides quantitative reconstruction of surface compositions. An overview of the diagnostic technique, known as accelerator-based in situ materials surveillance (AIMS), and the first AIMS diagnostic on the Alcator C-Mod tokamak is given. Experimental validation is shown to demonstrate that an optimized deuteron beam is injected into the tokamak, that low-Z isotopes such as deuterium and boron can be quantified on the material surfaces, and that magnetic steering provides access to different measurement locations. The first AIMS analysis, which measures the relative change in deuterium at a single surface location at the end of the Alcator C-Mod FY2012 plasma campaign, is also presented.

  • 出版日期2013-12