摘要

The transfer matrix method (TMM) based on numerical mode matching (NMM) approach is developed to investigate the acoustic behavior of double-chamber perforated tube dissipative silencer with mean flow. The present method is verified by comparing the transmission loss (TL) predictions and experimental data. Then the effects of mean flow, perforated tube offset and lengths of perforations are studied computationally. As the Mach number increases, the TL of dissipative silencer is lowered at most frequencies. The perforated tube offset may change the acoustic behavior in the mid-high frequency range. Increasing the total length of perforations increases TL at the mid-high frequencies.