摘要

Most existing carbon emission management strategies only control the total carbon emission without focusing on both the regional carbon emission and the stochastic properties of the system. Correlated regional loads and unpredictable renewable energies in the power system make regional carbon emission management (RCEM) increasingly challenging and necessary. A complex multi-objective RCEM model based on probabilistic power flow (PPF) considering correlated variables is contributed in this paper. The three objective functions to be minimized are 1) the cost of electricity generated, 2) the total carbon emission, and 3) the carbon emission difference among regions which reflects the regional carbon emission imbalance from the supply side. A new clonal selection algorithm (CSA) coupled with a fuzzy satisfying decision method and an extended 2m + 1 point estimate method (PEM) is proposed to solve this multi-objective RCEM model. The proposed method is illustrated through IEEE 30-bus, IEEE 118-bus and simplified Shanghai case studies. The proposed model can help reduce the total carbon emission, control regional carbon emission, prevent probabilistic congested lines from overloading, and choose the most suitable region for wind farms (WFs).