摘要

Misfolding and aggregation of proteins is involved in some of the most prevalent neurodegenerative disorders. The importance of collagen stems from the fact that it is one of the dominant component used for tissue engineering and drug delivery applications and is a major component of skin, tendon, bone and other connective tissues. A systematic investigation on the conformation of collagen at various concentrations of glyoxal is studied by various biophysical techniques such as Trp fluorescence, ANS binding, Circular dichroism (CD), ATR-FTIR, Congo red (CR) assay, Rayleigh light scattering and Turbidity measurements. At 60 % (v/v) glyoxal, collagen retains native-like secondary structure, altered Trp environment and high ANS fluorescence, characteristic of molten globule (MG) state. At 80 % (v/v) glyoxal, insoluble collagen aggregates are detected as confirmed by decrease in Trp and ANS fluorescence, increase in non-native beta sheet structure as evident from far-UV CD and FTIR spectra, increase in Thioflavin T fluorescence, Rayleigh light scattering, Turbidity measurements, as well as red shift in CR absorbance.

  • 出版日期2014-9