Activated macrophages promote Wnt/beta-catenin signaling in cholangiocarcinoma cells

作者:Loilome Watcharin*; Bungkanjana Pornpan; Techasen Anchalee; Namwat Nisana; Yongvanit Puangrat; Puapairoj Anucha; Khuntikeo Narong; Riggins Gregory J
来源:Tumor Biology, 2014, 35(6): 5357-5367.
DOI:10.1007/s13277-014-1698-2

摘要

The Wnt/beta-catenin signaling pathway is pathologically activated in cholangiocarcinoma (CCA). Here, we determined the expression profile as well as biological role of activated Wnt/beta-catenin signaling in CCA. The quantitative reverse transcription polymerase chain reaction demonstrated that Wnt3a, Wnt5a, and Wnt7b mRNA were significantly higher in CCA tissues than adjacent non-tumor tissues and normal liver tissues. Immunohistochemical staining revealed that Wnt3a, Wnt5a, and Wnt7b were positive in 92.1, 76.3, and 100 % of 38 CCA tissues studied. It was noted that Wnt3 had a low expression in tumor cells, whereas a high expression was mainly found in inflammatory cells. Interestingly, a high expression level of Wnt5a was significantly correlated to poor survival of CCA patients (P = 0.009). Membrane localization of beta-catenin was reduced in the tumors compared to normal bile duct epithelia, and we also found that 73.7 % of CCA cases showed the cytoplasmic localization. Inflammation is known to be a risk factor for CCA development, and we tested whether this might induce Wnt/beta-catenin signaling. We found that lipopolysaccharides (LPS) elevated the expression of Wnt3 both mRNA and protein levels in the macrophage cell line. Additionally, the conditioned media taken from LPS-induced activated macrophage culture promoted beta-catenin accumulation in CCA cells. Furthermore, transient suppression of beta-catenin by siRNA significantly induced growth inhibition of CCA cells, concurrently with decreasing cyclin D1 protein level. In conclusion, the present study reports the abundant expression of Wnt protein family and beta-catenin in CCA as well as the effect of inflammatory condition on Wnt/beta-catenin activation in CCA cells. Importantly, abrogation of beta-catenin expression caused significant CCA cell growth inhibition. Thus, the Wnt/beta-catenin signaling pathway may contribute to CCA cell proliferation and hence may serve as a prognostic marker for CCA progression and provide a potential target for CCA therapy.

  • 出版日期2014-6