摘要

A hybrid Cartesian grid/gridless method is developed for calculating viscous flows over multi-element airfoils. The method adopts an unstructured Cartesian grid to cover most areas of the computational domain and leaves only small region adjacent to the aerodynamic bodies to be filled with the cloud of points used in the gridless methods, which results in a better combination of the computational efficiency of the Cartesian grid and the flexibility of the gridless method in handling complex geometries. The clouds of points in the local gridless region are implemented in an anisotropic way according to the features of the thin boundary layer of the viscous flows over the airfoils, and the clouds of points at the vicinity of the interface between the grid and the gridless regions are also controlled by using an adaptive refinement technique during the generation of the unstructured Cartesian grid. An implementation of the resulting hybrid method is presented for solving two-dimensional compressible Navier-Stokes (NS) equations. The simulations of the viscous flows over a RAE2822 airfoil or a two-element airfoil are successfully carried out, and the obtained results agree well with the available experimental data.

全文