摘要

Circadian rhythms in mammals are driven by a central clock in the suprachiasmatic nucleus (SCN). In vitro, temperature cycles within the physiological range can act as potent entraining cues for biological clocks. We altered the body temperature (T-c) rhythm in rats by manipulating energy intake (EI) to determine whether EI-induced changes in T-c oscillations are associated with changes in SCN clock gene rhythms in vivo. Male Wistar rats (n = 16 per diet) were maintained on either an ad libitum diet (CON), a high energy cafeteria diet (CAF), or a calorie restricted diet (CR), and T-c was recorded every 30 min for 6-7 weeks. SCN tissue was harvested from rats at zeitgeber time (ZT) 0, ZT6, ZT12, or ZT18. Expression of the clock genes Bmal1, Per2, Cry1, and Rev-erb alpha, the heat shock transcription factor Hsf1, and the heat shock protein Hsp90aa1, were determined using qPCR. The circadian profile of gene expression for each gene was characterized using cosinor analysis. Compared to the CON rats, the amplitude of T-c was decreased in CAF rats by 0.1 degrees C (p < 0.001), and increased in CR rats by 0.3 degrees C (p < 0.001). The amplitude of Hsp90aa1 expression was lowest in CAF rats and highest in CR rats (p = 0.045), but the amplitude of all of the clock genes and Hsf1 were unaffected by diet (p > 0.25). Compared to CON, phase advances of the T-c, Bmal1, and Per2 rhythms were observed with CR feeding (p < 0.05), but CAF feeding elicited no significant changes in phase. The present results indicate that in vivo, the SCN is largely resistant to entrainment by EI-induced changes in the T-c rhythm, although some phase entrainment may occur.

  • 出版日期2016-1-2