摘要

It has been reported that 3-D cultures of hepatocytes or HepG2 cells were less susceptible to methotrexate (MTX) than their 2-D counterparts. Such a mechanism was addressed in this study by investigation of MTX hepatotoxicity in gel entrapped (3-D) rat hepatocytes vs. traditional monolayer culture (2-D). Similarly, gel entrapped hepatocytes showed higher drug resistance to MTX than hepatocyte monolayers in whatever culture medium with or without modification by hormone supplements (dexamethasone, glucagon and insulin). It was also found that medium modification by hormones greatly increased drug resistance of hepatocyte monolayers but has only a slight effect on 3-D cultured hepatocytes. These differential MTX toxicities regarding culture medium and culture models were assumed to correlate with multidrug resistance associated protein 2 (Mrp2). The involvement of Mrp2 was confirmed directly by the fact that MTX intracellularly accumulated less in gel entrapped hepatocytes than in hepatocyte monolayer but could be enhanced by Mrp2 inhibitors accompanied by reduced drug resistance. Furthermore, the expression of Mrp2 on gene level and transportation activity together with bile-duct-like structure were more significantly evidenced in 3-D gel entrapment culture than in 2-D monolayer culture. In conclusion, the highly preserved Mrp2 in 3-D gel entrapped hepatocytes determines its high drug resistance to MTX. Gel entrapped hepatocytes could be useful for investigation of hepatic transportation and hepatotoxicity.